243^2x=1/9

Simple and best practice solution for 243^2x=1/9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 243^2x=1/9 equation:



243^2x=1/9
We move all terms to the left:
243^2x-(1/9)=0
We add all the numbers together, and all the variables
243^2x-(+1/9)=0
We get rid of parentheses
243^2x-1/9=0
We multiply all the terms by the denominator
243^2x*9-1=0
Wy multiply elements
2187x^2-1=0
a = 2187; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2187·(-1)
Δ = 8748
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8748}=\sqrt{2916*3}=\sqrt{2916}*\sqrt{3}=54\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-54\sqrt{3}}{2*2187}=\frac{0-54\sqrt{3}}{4374} =-\frac{54\sqrt{3}}{4374} =-\frac{\sqrt{3}}{81} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+54\sqrt{3}}{2*2187}=\frac{0+54\sqrt{3}}{4374} =\frac{54\sqrt{3}}{4374} =\frac{\sqrt{3}}{81} $

See similar equations:

| -(p+3)=-2(2p+1)-7 | | 2/5k=150 | | 50=2x+13 | | 6x+5-7x-4=180 | | 31x=61x+1 | | 10p+19=4p-5 | | -10=c-4 | | x+16=60-75x | | -2p+4p-7=9 | | 3x-61=2x–50 | | -2/5w+1/2=-2/3 | | w/2.5=42 | | -504=1.26d | | 9y+8-4y=3(y-2) | | 0.008x-0.2x=1.32 | | -2=h/9 | | 1.25t+15=90 | | 4c-3D=2 | | 20x-1=18x+3 | | z–20=–4 | | 3x-5x+8x=4x+18x | | t−5=−6 | | 125-25w=0 | | 70+12+x+x=180 | | u/8=32 | | 2x-14+x=10 | | 2-3)1/3(z+4)-6=2/3(5-z) | | ((3(x+5)-2x=22 | | ‪6x+3=8x-12‬ | | 7(x+3)=9x+3-2x+18 | | 1+x+12=2x-4 | | p/16=-0.25 |

Equations solver categories